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Abstract
We exhibit families of matrix-valued functions F(m, t), m = 0, 1, 2, . . . , t
real, which are eigenfunctions of a fixed differential operator in t and of a
fixed (block) tridiagonal semiinfinite matrix. Thus we have nontrivial solutions
of a matrix-valued version of Bochner’s problem. These functions arise as
matrix-valued spherical functions associated to the two-dimensional complex
projective space SU(3)/U(2). In the very special case of one-dimensional
representations of U(2) they give instances of Jacobi polynomials that feature
among the (scalar-valued) solutions of the problem posed and solved by Bochner
back in 1929. This very classical work can be considered as the first instance
of the ‘bispectral problem’ of recent interest in several aspects of mathematical
physics.

PACS numbers: 02.10.De, 02.10.Yn, 02.30.Vv

1. Introduction

Back in 1929, Bochner [B] posed the problem of determining all families of scalar-valued
orthogonal polynomials that are eigenfunctions of some arbitrary but fixed second-order
differential operator. This problem was solved by Bochner in the original paper and has
resurfaced in different clothing many times since. This is not the appropriate place to review
all these developments, and we just give references to a few recent papers where the reader
can find a detailed presentation of these results [GH, H, SVZ].

It is important to notice that certain problems like the ‘bispectral problem’ considered
in [DG] can be seen as a purely continuous version of a broad extension of the original
Bochner problem. In the original formulation, back in [B], the pair of operators required by
the bispectral property are the second-order difference operator furnished by the three-term
recursion relation satisfied by any family of orthogonal polynomials and the second-order
differential operator explicitly asked for by Bochner. It is now clear how these conditions on
the orders of the operators can be relaxed to yield a rich variety of situations. The case when
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one is dealing with differential operators of arbitrary order has been considered for instance
in [W1,W2], as well as in [BHY]. There is another sense in which [DG] differs from the original
problem of Bochner, and this is a shift of emphasis away from any particular eigenfunction
and rather a concentration on two ‘local operators’ (acting on different variables) whose joint
eigenspaces could have arbitrary dimensions. This leads to considerations of the rank of the
corresponding vector bundles over some algebraic curve. In the context of Bochner this leads
one to deal with doubly infinite matrices and to abandon the insistence on polynomials, a point
well stressed in [GH]. From this point of view this paper follows rather closely the work started
in [B]. For some new developments see also [HI].

Many of the topics discussed in these papers have made interesting contacts with areas as
varied as integrable systems, random matrix theory, interpolation and approximation theory,
problems of electrostatic equilibrium, extensions of the Huygens principle, representations
of the Weyl algebra, Calogero–Moser systems etc. It appears very natural, and maybe even
profitable, to revisit the question in the matrix-valued context, and this is the theme of this
paper.

Returning to the question raised by Bochner it is clear, starting with the work that stretches
from Cartan to Harish-Chandra, see [GV], that a natural place to find examples satisfying his
conditions is in the theory of spherical functions for symmetric spaces of rank one. In the
compact case this leads to Jacobi polynomials, one of the four families that feature in the full
solution of Bochner’s problem. In fact it only leads to special cases of these Jacobi polynomials,
a fact to which we will return later.

Now we turn to a description of the results in the present paper following a few introductory
comments.

As remarked at the end of the introduction to [DG] some of the features of the bispectral
problem lead one to suspect some sort of harmonic analysis in the background, even when a
group is not obviously around. At any rate many of the more elaborate examples are obtained
by applying the Darboux process to such basic situations where a symmetric space is present,
see [DG]. With this in mind it is not unreasonable to go back to the ‘group situation’ in search
for examples in this matrix-valued setup.

The general theory of scalar-valued spherical functions of arbitrary type, associated with
a pair (G,K) with G a locally compact group and K a compact subgroup, goes back to
Godement and Harish-Chandra. In [T], attention is focused on the underlying matrix-valued
spherical functions defined as a solution of an integral identity. These two notions are related
by the operation of taking traces. This theory is also developed in [GV].

When G is a Lie group the general theory see [T, GV] gives for a fixed irreducible
representation (π, V ) of K a family of matrix-valued functions that are eigenfunctions of
a system of differential operators defined on the Lie group G. These spherical functions in
fact take values in the set of linear maps from V into itself.

In [GPT] one finds a detailed elaboration of this theory when the symmetric space G/K
is the complex projective plane. In this case we have G = SU(3) and K = S(U(2)× U(1)).
To the best of our knowledge no other instance of an explicit description of the irreducible
spherical functions of anyK-type is known when the subgroupK is non-Abelian and thus the
functions involved are not scalar valued.

This is not the appropriate place to repeat the results in [GPT] and it suffices to say that for
each irreducible representation of K one eventually gets (by a proper combination of several
spherical functions corresponding to this representation) a family of matrix-valued functions
H̃ (t, w), 0 < t < 1, w = 0, 1, 2, 3, . . . such that the differential equation

DH̃ (t, w)T = H̃ (t, w)T � (1)
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is satisfied for a differential operator D whose coefficients depend on t (and not on w); � is a
diagonal matrix with entries that depend on w (but not on t).

Many other properties of these functions H̃ (t, w) are discussed in [GPT], including
orthogonality, etc, but we do not make any attempt here to summarize the results in that
rather long paper.

The last section in [GPT] deals with what is called there a ‘rather intriguing matrix valued’
form of the bispectral property enjoyed by H̃ (t, w). This last section makes a convincing case
that as functions of the spectral parameter w they satisfy a three-term recursion relation of the
form

tH̃ (t, w) = AwH̃(t, w − 1) + BwH̃ (t, w) + CwH̃(t, w + 1) (2)

where Aw, Bw and Cw are matrices independent of t . In [GPT] one finds explicit formulas for
the matrices A and C above, as well as the off-diagonal entries in B. Full details are given in
the case when the dimension of the representation ofK is three, i.e. one of the two parameters
(�, n) that determine the representations of K satisfies � = 2. In the special case when � = 0
and n = 0 [GPT] gives the classical results involving Jacobi polynomials.

The main result of this paper is to give explicit formulae for these matrices A(w), B(w)
and C(w) for the case of an arbitrary irreducible representation of K and more importantly to
give a sketch of the way in which the tensor product of certain representations ofG can be used
to get these explicit formulas. Full details, including proofs of the statements in section 3, will
be given in a separate publication.

Before we take up this issue in the next section one could remark that another possible route
to finding matrix-valued examples of Bochner’s problem, even in the simplest case where all
operators involved are of order two, would be to take the emerging general theory of matrix-
valued orthogonal polynomials, see for instance [DVA], and to search here for interesting
special cases where a second-order differential operator would exist. We learned of such an
attempt through the kindness of Ismail [I] (see also [D]). For completeness one should say
that the family of polynomial functions H̃ (t, w) that we consider here does not satisfy all the
conditions of the theory in [DVA].

The results in [GPT] and this paper suggest that it may be worthwhile revisiting the general
problem of Bochner in a matrix-valued context. The results discussed here are, to the best of
our knowledge, the first nontrivial families of examples. It is natural to inquire, as the referees
have done, about the situation for the pair (G,K) = (SU(n), S(U(n− 1)×U(1)) as well as
other such families. At this point this appears to be a very interesting challenge.

2. Recursion relation for spherical functions

The aim of this section is to obtain a recursion relation for the spherical functions associated
with the pair (G,K) = (SU(3), S(U(2)× U(1)).

2.1. The Lie algebra of SU(3)

The Lie algebra of G is g = {X ∈ gl(3,C) : X = −Xt
, trX = 0}. Its complexification is

gC = sl(3,C). The Lie algebra k of K can be identified with u(2) and its complexification kC

with gl(2,C).
The following matrices form a basis of g:

H1 =
[ i 0 0

0 −i 0
0 0 0

]
H2 =

[ i 0 0
0 i 0
0 0 −2i

]
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Y1 =
[ 0 1 0

−1 0 0
0 0 0

]
Y2 =

[ 0 i 0
i 0 0
0 0 0

]

Y3 =
[ 0 0 1

0 0 0
−1 0 0

]
Y4 =

[ 0 0 i
0 0 0
i 0 0

]

Y5 =
[ 0 0 0

0 0 1
0 −1 0

]
Y6 =

[ 0 0 0
0 0 i
0 i 0

]
.

Let h be the Cartan subalgebra of gC of all diagonal matrices. The corresponding root
space structure is given by

Xα =
[ 0 1 0

0 0 0
0 0 0

]
X−α =

[ 0 0 0
1 0 0
0 0 0

]
Hα =

[ 1 0 0
0 −1 0
0 0 0

]

Xβ =
[ 0 0 0

0 0 1
0 0 0

]
X−β =

[ 0 0 0
0 0 0
0 1 0

]
Hβ =

[ 0 0 0
0 1 0
0 0 −1

]

Xγ =
[ 0 0 1

0 0 0
0 0 0

]
X−γ =

[ 0 0 0
0 0 0
1 0 0

]
Hγ =

[ 1 0 0
0 0 0
0 0 −1

]

where

α(x1E11 + x2E22 + x3E33) = x1 − x2

β(x1E11 + x2E22 + x3E33) = x2 − x3

γ (x1E11 + x2E22 + x3E33) = x1 − x3.

We have

Xα = 1
2 (Y1 − iY2) Xβ = 1

2 (Y5 − iY6) Xγ = 1
2 (Y3 − iY4)

X−α = − 1
2 (Y1 + iY2) X−β = − 1

2 (Y5 + iY6) X−γ = − 1
2 (Y3 + iY4).

Let Z = Hα + 2Hβ , H̃1 = 2Hα +Hβ and H̃2 = Hβ −Hα .

2.2. Recursion relation on G

We identify GL(2,C) and U(2) with the subgroups of all 2 × 2 matrices of GL(3,C) and
respectively of U(3) in the following way:

GL(2,C) �
(
GL(2,C) 0

0 1

)
U(2) �

(
U(2) 0

0 1

)
.

The equivalence classes of finite-dimensional irreducible holomorphic representations of
GL(3,C) are parametrized by the 3-tuples of integers m1 � m2 � m3. When we restrict the
representation m1 � m2 � m3 of GL(3,C) to GL(2,C) it decomposes as the direct sum of
the representations k1 � k2 of GL(2,C) such that m1 � k1 � m2 � k2 � m3, all of these
with multiplicity one.

The irreducible representation of G with highest weight λ = pλ1 + qλ2 can be realized
as the restriction to G of the representation τ(m1,m2,m3) of GL(3,C) with p = m1 − m2 and
q = m2 −m3. Also τ(m1,m2,m3) restricted toU(2) is the direct sum of the representations τ(k1,k2)

withm1 � k1 � m2 � k2 � m3. Moreover the irreducibleU(2)-submodule Vk1,k2 of Vm1,m2,m3

is an irreducible K-module of type (n, �) with

� = k1 − k2 n = k1 + 2k2 −m1 −m2 −m3.
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The irreducible GL(3,C)-modulo W = C
3 with the canonical action corresponds to the

parameters (1, 0, 0).
The following lemma gives the decomposition into irreducible GL(3,C)-modules of the

tensor product of V = Vm1,m2,m3 with W .

Lemma 2.1. We have

V ⊗W � V σ1 ⊕ V σ2 ⊕ V σ3

where V σ1 , V σ2 and V σ3 are irreducible GL(3,C)-modules of parameters

σ1 = (m1 + 1,m2,m3) σ2 = (m1,m2 + 1,m3) σ3 = (m1,m2,m3 + 1).

Proof. See [Ze, p 227, theorem 2]. �

Now we take V1 = Vk1,k2 an irreducible U(2)-submodule of Vm1,m2,m3 and W1 the
irreducible U(2)-submodule of W of unit dimension, i.e. W1 = Ce3. We note that W1 = V0,0

as a K-module is of type (−1, 0). There exists a basis {vk : k1 � k � k2} of V1, taken from a
Gelfand–Cetlin basis of Vm1,m2,m3 , of weight vectors vk parametrized by the triangles

m1 m2 m3

k1 k2

k

.

The weight of vk is given by

kx1 + (k1 + k2 − k)x2 + (m1 +m2 +m3 − k1 − k2)x3.

The tensor productV1⊗W1 is an irreducibleU(2)-module of parameters (k1, k2)+(0, 0) =
(k1, k2). TheGL(3,C)-projection Pj : V ⊗W −→ V σj (for j = 1, 2, 3) maps V1 ⊗W1 onto
the trivial module or onto the U(2)-submodule V

σj
k1,k2

of V σj . For any vk in the basis of V1 we
have

vk ⊗ e3 = v1 + v2 + v3 ∈ V σ1 ⊕ V σ2 ⊕ V σ3 .

The vectors vj are weight vectors in V σj and belong to the U(2)-submodule V
σj
k1,k2

. Thus the
corresponding triangles of v1, v2, v3 are, respectively,

m1 + 1 m2 m3

k1 k2

k

m1 m2 + 1 m3

k1 k2

k

m1 m2 m3 + 1
k1 k2

k

.

We note that the vector vk ⊗e3 is of weight (k, k1 +k2 −k,m1 +m2 +m3 + 1−k1 −k2) and
each V

σj
k1,k2

is an irreducibleK-module of type (k1 + 2k2 −m1 −m2 −m3 − 1, �) = (n− 1, �).
It is well known (see [Hu, p 32]) that there exists a basis {vi} �i=0 of V1 such that

π̇(Hα)vi = (�− 2i)vi
π̇(Xα)vi = (�− i + 1)vi−1 (v−1 = 0)

π̇(X−α)vi = (i + 1)vi+1 (v�+1 = 0).

(3)

Lemma 2.2. Let us consider a U(2)-invariant inner product on V1. Then the basis {vi} �i=0
described above is an orthogonal basis such that

‖vi‖2 =
(
�

i

)
‖v0‖2.
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Proof. We have π̇(Hα)∗ = −iπ̇(H1)
∗ = iπ̇(H1)

∗ = π̇(Hα) and

π̇(X−α)∗ = − 1
2

(
π̇(Y1) + iπ̇(Y2)

)∗ = − 1
2

(− π̇(Y1) + iπ̇(Y2)
) = π̇(Xα)

because π̇(Y )∗ = −π̇(Y ) for all Y ∈ g.
Since π̇(Hα)∗ = π̇(Hα) and the vi are eigenvectors corresponding to different eigenvalues

of π̇(Hα) they are orthogonal to each other.
Now the proof will be completed by induction on 0 � i � �. The statement is clearly true

for i = 0. Let us assume that the assertion is true for some 0 � i � �− 1. Then

(i + 1)〈vi+1, vi+1〉 = 〈π̇(X−α)vi, vi+1〉 = 〈vi, π̇(Xα)vi+1〉 = (�− i)〈v0, v0〉.
Thus

〈vi+1, vi+1〉 = �− i

i + 1

(
�

i

)
〈v0, v0〉 =

(
�

i + 1

)
〈v0, v0〉.

�
Proposition 2.3. Let {vi} �i=0 be a basis of V1 such that (3) holds, and equip V with a G-
invariant inner product. Similarly take onW theG-invariant inner product such that ‖e3‖ = 1.
Let aj be defined by

v0 ⊗ e3 = a1v
σ1
0 + a2v

σ2
0 + a3v

σ3
0 ∈ V σ1 ⊕ V σ2 ⊕ V σ3 (4)

with aj > 0 and ‖vσj0 ‖ = 1. Let v
σj
i ∈ V σj be defined by

vi ⊗ e3 = a1v
σ1
i + a2v

σ2
i + a3v

σ3
i .

Then
{
v
σj
i

}�
i=0 (j = 1, 2, 3) is a basis of an irreducible U(2)-module V

σj
1 contained in V σj

such that (3) holds. If Pj (v0 ⊗ e3) = 0 we take aj = 0 and we do not define v
σj
i . Hence

‖vσji ‖2 =
(
�

i

)
.

Proof. SincePj is in particular aU(2)-morphism and e3 is aU(2)-invariant, from (4) it follows
that each v

σj
0 is a U(2)-dominant vector of weight �.

On the other hand we have

a1X
i
−α(v

σ1
0 ) + a2X

i
−α(v

σ2
0 ) + a3X

i
−α(v

σ3
0 ) = Xi

−α(v0 ⊗ e3) = i!vi ⊗ e3

= i!
(
a1v

σ1
i + a2v

σ2
i + a3v

σ3
i

)
.

Therefore Xi
−α(v

σj
0 ) = i! v

σj
i for j = 1, 2, 3. This completes the proof of the proposition. �

Theorem 2.4. Let0 be the spherical function of type (n, �) associated with theG-module V .
Let φ be the spherical function of type (−1, 0) associated with the G-module W . Let 0σj be
the spherical function of type (n−1, �) associated with theG-module V σj (j = 1, 2, 3). Then

0(g) φ(g) = a2
1 0

σ1(g) + a2
2 0

σ2(g) + a2
3 0

σ3(g).

Proof. Let ui =
(
�

i

)−1/2

vi and let u
σj
i =

(
�

i

)−1/2

v
σj
i . Then {ui}�0 and {uσji }�0 are,

respectively, orthonormal bases of V1 and V
σj

1 for j = 1, 2, 3. On the one hand we have

〈g(uj ⊗ e3), ui ⊗ e3〉 = 〈guj , ui〉 〈ge3, e3〉.
On the other hand we get

〈g(uj ⊗ e3), ui ⊗ e3〉 = 〈a1gu
σ1
j + a2gu

σ2
j + a3gu

σ3
j , a1u

σ1
i + a2u

σ2
i + a3u

σ3
i 〉

= a2
1〈guσ1

j , u
σ1
i 〉 + a2

2〈guσ2
j , u

σ2
i 〉 + a2

3〈guσ3
j , u

σ3
i 〉.

Therefore

0ij (g)φ(g) = a2
1 0

σ1
ij (g) + a2

2 0
σ2
ij (g) + a2

3 0
σ3
ij (g).

This completes the proof of the theorem. �
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2.3. Reduction to one variable

Now we want to express the identity in theorem 2.4 in terms of the functionsH(t), associated
with the spherical functions, given in sections 10 and 11 of [GPT]. For details and definitions
see [GPT].

For any s ∈ R let

a(s) =
( cos s 0 sin s

0 1 0
− sin s 0 cos s

)
.

If we put A(s) =
(

cos s 0
0 1

)
, for −π/2 < s < π/2, and 0 denotes a spherical function of

type (n, �), we have

0(a(s)) = (cos s)nH(a(s))A(s)� = (cos s)nH̃ (tan s)A(s)�

since p(a(s)) = (tan s, 0, 1).
If we make the change of variables t = cos2 s we have

0(a(s)) = t
n
2H(t)

(
t

1
2 0

0 1

)�
where the exponent � denotes the �th symmetric power of the matrix.

The spherical function φ(g) of type (−1, 0) associated with the G-module W satisfies
φ(a(s)) = (cos s)−1h(tan s), and a direct computation gives φ(a(s)) = cos s. Thus the
associated function h in the variable t is h(t) = t .

Corollary 2.5. Let H = H(t) be the function corresponding to the spherical function of type
(n, �) associated with the G-module V . Let Hσj = Hσj (t) be the function corresponding to
the spherical function of type (n− 1, �) associated with theG-module V σj , j = 1, 2, 3. Then

t H(t) = a2
1H

σ1(t) + a2
2H

σ2(t) + a2
3H

σ3(t).

Proof. From theorem 2.4 we get

0(a(s)) φ(a(s)) = a2
1 0

σ1(a(s)) + a2
2 0

σ2(a(s)) + a2
3 0

σ3(a(s)).

Making the change of variables t = cos2 s we obtain

t
n+1

2 H(t)

(
t

1
2 0

0 1

)�
= (

a2
1H

σ1(t) + a2
2H

σ2(t) + a2
3H

σ3(t)
)
t
n−1

2

(
t

1
2 0

0 1

)�
.

Since for t �= 0 the matrix

(
t

1
2 0

0 1

)�
is nonsingular, the corollary follows. �

Now we want to reformulate corollary 2.5 in terms of the parameters n, �, k,w, introduced
in section 9 of [GPT]. First of all we need the following lemma.

Lemma 2.6. Let V = Vm1,m2,m3 be a GL(3,C) irreducible module and let V1 be a U(2)
irreducible submodule ofV of parameters k1, k2. Now let us consider theGL(3,C) irreducible
module U = Um1−m3,m2−m3,0 and the corresponding U(2) irreducible submodule U1 of U of
parameters k1 −m3, k2 −m3. Then the spherical functions 0V,V1 and 0U,U1 associated with
the G-modules V and U and the K-submodules V1 and U1, respectively, are equivalent.

Proof. It is clear that the G-modules V and U are equivalent. Moreover V1 as a K-
submodule of V is of type (n, �) with n = k1 + 2k2 − m1 − m2 − m3 and � = k1 − k2.
Thus the corresponding U(2)-submodule U1 of U must have parameters k′

1, k
′
2 such that

n = k′
1 + 2k′

2 − (m1 − m3) − (m2 − m3) and � = k′
1 − k′

2. From this it follows easily
that k′

1 = k1 −m3 and that k′
2 = k2 −m3. �



10654 F A Grünbaum et al

Corollary 2.7. Let H = H(n, �, k,w; t) be the function corresponding to the spherical
function on G of type (n, �) associated with the parameters k,w. Then

t H(n, �, k,w; t) = a2
1H(n− 1, �, k, w + 1; t) + a2

2H(n− 1, �, k + 1, w; t)
+a2

3H(n− 1, �, k, w; t).
We recall that the parameters n, �, k,w are integers subject to the conditions 0 � w, 0 � k � �

and 0 � w + n + k. We also note that the constants aj depend on n, �, k,w but not on t .

Proof. To identify the spherical functions appearing in the statement of theorem 2.4 we may
assume thatm3 = 0. Then we have the following relations (section 9 of [GPT]): p = m1 −m2,
q = m2, n = k1 + 2k2 − p − 2q, � = k1 − k2, w = p + q − k1 and k = q − k2. Then
0(g) = 0(n, �, k,w; g), φ(g) = φ(−1, 0, 1, 0; g), 0σ1(g) = 0(n − 1, �, k, w + 1; g) and
0σ2(g) = 0(n − 1, �, k + 1, w; g). To identify 0σ3 one first uses lemma 2.6 and then one
computes the new parameters and obtains0σ3(g) = 0(n− 1, �, k, w; g). This completes the
proof of the corollary. �

3. The bispectral property

Let W ∗ denote the GL(3,C)-module dual to W . Then W ∗ = (0, 0,−1). Replacing W in the
previous section by W ∗ we obtain the following results.

Lemma 3.1. If V = (m1,m2,m3) then

V ⊗W ∗ � V τ1 ⊕ V τ2 ⊕ V τ3

where V τ1 , V τ2 and V τ3 are irreducible GL(3,C)-modules of parameters

τ1 = (m1 − 1,m2,m3) τ2 = (m1,m2 − 1,m3) τ3 = (m1,m2,m3 − 1).

Now we take W ∗
1 = Ce∗3. Then W ∗

1 = (0, 0) as a U(2)-submodule of W ∗, and as a
K-module is of type (1, 0).

Let V1 be the U(2)-submodule of V = (m1,m2,m3) of parameters (k1, k2). Then the
GL(3,C)-projection Pj : V ⊗W ∗ −→ V τj (for j = 1, 2, 3) maps V1 ⊗W ∗

1 onto the trivial
module or onto the U(2)-submodule V

τj
k1,k2

of V τj . Observe that V
τj
k1,k2

as a K-module is of
type (n + 1, �).

Theorem 3.2. Let0 be the spherical function of type (n, �) associated with theG-module V .
Let ψ be the spherical function of type (1, 0) associated with the G-module W ∗. Let 0τj be
the spherical function of type (n+ 1, �) associated with theG-module V τj , (j = 1, 2, 3). Then

0(g)ψ(g) = b2
1 0

τ1(g) + b2
2 0

τ2(g) + b2
3 0

τ3(g).

Corollary 3.3. Let H = H(t) be the function corresponding to the spherical function of type
(n, �) associated with the G-module V . Let Hτj = Hτj (t) be the function corresponding to
the spherical function of type (n + 1, �) associated with the G-module V τj , j = 1, 2, 3. Then

H(t) = b2
1H

τ1(t) + b2
2H

τ2(t) + b2
3H

τ3(t).

Corollary 3.4. Let H = H(n, �, k,w; t) be the function corresponding to the spherical
function on G of type (n, �) associated with the parameters k,w. Then

H(n− 1, �, k, w; t) = b2
1H(n, �, k,w − 1; t) + b2

2H(n, �, k − 1, w; t)
+b2

3H(n, �, k,w; t).
The constants bj depend on n, �, k,w but not on t .
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If we combine the results of corollaries 2.7 and 3.4 we obtain:

Proposition 3.5. If we fix the K-type (n, �) we may write aj (n, �, k,w) = aj (k,w) and
bj (n, �, k,w) = bj (k,w) for j = 1, 2, 3. In the following equation we also write
aj = aj (k,w). Then we have

t H(n, �, k,w; t) = (a2
1b

2
1(k, w + 1) + a2

2b
2
2(k + 1, w) + a2

3b
2
3(k, w))H(k,w; t)

+a2
1b

2
2(k, w + 1)H(k − 1, w + 1; t) + a2

1b
2
3(k, w + 1)H(k,w + 1; t)

+a2
2b

2
1(k + 1, w)H(k + 1, w − 1; t) + a2

2b
2
3(k + 1, w)H(k + 1, w; t)

+a2
3b

2
1(k, w)H(k,w − 1; t) + a2

3b
2
2(k, w)H(k − 1, w; t).

Proposition 3.6. If we fix the K-type (n − 1, �) we may write aj (k,w) = aj (n, �, k,w)

and bj (k,w) = bj (n, �, k,w) for j = 1, 2, 3. In the following equation we also write
bj = bj (k,w); then we have

t H(n− 1, �, k, w; t) = (b2
1a

2
1(k, w − 1) + b2

2a
2
2(k − 1, w) + b2

3a
2
3(k, w))H(k,w; t)

+b2
1a

2
2(k, w − 1)H(k + 1, w − 1; t) + b2

1a
2
3(k, w − 1)H(k,w − 1; t)

+b2
2a

2
1(k − 1, w)H(k − 1, w + 1; t) + b2

2a
2
3(k − 1, w)H(k − 1, w; t)

+b2
3a

2
1(k, w)H(k,w + 1; t) + b2

3a
2
2(k, w)H(k + 1, w; t).

For given integers � � 0, w � 0 and n, consider the matrix whose rows are given
by the vectors H(n, �, k,w; t) corresponding to the values k = 0, 1, 2, . . . , �. Denote the
corresponding matrix by H̃ (n,w; t). As a function of t , H̃ (n,w; t) satisfies a second-order
differential equation

DH̃ (n,w; t)T = H̃ (n,w, t)T �.

Here � is a diagonal matrix with �(i, i) = −w(w + n + i + � + 2)− i(n + i + 1), 0 � i � �;
D is the differential operator introduced in [GPT]. Moreover we have:

Theorem 3.7. There exist matrices Aw, Bw and Cw independent of t , such that

tH̃ (n,w; t) = AwH̃(n,w − 1; t) + BwH̃ (n,w; t) + CwH̃(n,w + 1; t).
More precisely we may take

Aw =
�∑
i=0

a2
3(i, w)b

2
1(i, w)Ei,i +

�−1∑
i=0

a2
2(i, w)b

2
1(i + 1, w)Ei,i+1

Bw =
�∑
i=0

(
a2

1(i, w)b
2
1(i, w + 1) + a2

2(i, w)b
2
2(i + 1, w) + a2

3(i, w)b
2
3(i, w)

)
Ei,i

+
�−1∑
i=0

a2
3(i, w)b

2
2(i, w)Ei+1,i +

�−1∑
i=0

a2
2(i, w)b

2
3(i + 1, w)Ei,i+1

Cw =
�∑
i=0

a2
1(i, w)b

2
3(i, w + 1)Ei,i +

�−1∑
i=0

a2
1(i, w)b

2
2(i, w + 1)Ei+1,i .

Finally, the explicit values of the quantities a2
j and b2

j are given by

a2
1(i, w) = (w + 1)(w + � + 2)

(2w + n + � + i + 2)(w + �− i + 1)

a2
2(i, w) = (i + 1)(�− i)

(w + n + 2i + 1)(w + �− i + 1)
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a2
3(i, w) = (w + n + i)(w + n + � + i + 1)

(2w + n + � + i + 2)(w + n + 2i + 1)

b2
1(i, w) = w(w + � + 1)

(2w + n + � + i + 1)(w + �− i + 1)

b2
2(i, w) = i(�− i + 1)

(w + n + 2i)(w + �− i + 1)

b2
3(i, w) = (w + n + i)(w + n + � + i + 1)

(2w + n + � + i + 1)(w + n + 2i)
.

The full derivation of these results will appear elsewhere.
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